KLASIFIKASI JUDUL BERITA BAHASA INDONESIA MENGGUNAKAN METODE SELEKSI FITUR CHI-SQUARE DAN ALGORITMA SUPPORT VECTOR MACHINE (SVM).

AQILLAH, NAZIFAH SUCI and Utami, Alvi Syahrini and Rachmatullah, Muhammad Naufal (2024) KLASIFIKASI JUDUL BERITA BAHASA INDONESIA MENGGUNAKAN METODE SELEKSI FITUR CHI-SQUARE DAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021382025129.pdf] Text
RAMA_55201_09021382025129.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_TURNITIN.pdf] Text
RAMA_55201_09021382025129_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_01_front_ref.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (2MB)
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_02.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (329kB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_03.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (211kB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_04.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_05.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (124kB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_06.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11kB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_07_ref.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (12kB) | Request a copy
[thumbnail of RAMA_55201_09021382025129_0022127804_0001129204_08_lamp.pdf] Text
RAMA_55201_09021382025129_0022127804_0001129204_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8kB) | Request a copy

Abstract

News is an important source of information in society, and classification of news headlines is a challenge for organizing this information. This research aims to develop software that is able to classify Indonesian news headlines into 3 categories using the Support Vector Machine method with Chi-Square Feature Selection. The SVM method is known as an effective classification algorithm, while chi-square feature selection is used to select important words. in news headlines that differentiate between categories. These selected words are then represented using TF-IDF weighting and used as features to train the SVM model. The data used is a collection of Indonesian language news titles in the categories EDU, FINANCE, SPORT. The research stages include text pre-processing, feature extraction, TFIDF weighting, SVM model training, and classification performance evaluation. The results of classification research using the value C=10 show that by applying a combination of chi-square feature selection with the SVM algorithm, the level of classification accuracy of Indonesian news titles decreases by around 3% compared to without feature selection. This research shows that chi-square feature selection with a linear kernel combined with the SVM algorithm is less effective for classification results. Keywords: Support Vector Machine, Chi-Square, classification accuracy, News Title

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Support Vector Machine, Chi-Square, akurasi klasifikasi, Judul Berita
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Nazifah Suci Aqillah
Date Deposited: 17 May 2024 03:46
Last Modified: 17 May 2024 03:46
URI: http://repository.unsri.ac.id/id/eprint/144210

Actions (login required)

View Item View Item