DANUARTA, MUHAMMAD ARYA and Stiawan, Deris (2024) DETEKSI EXPLOIT REVERSE TCP DARI APK TROJAN PADA NETWORK TRAFFIC DENGAN METODE RANDOM FOREST. Undergraduate thesis, Sriwijaya University.
Text
RAMA_56201_09011282025035.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (2MB) |
|
Text
RAMA_56201_09011282025035_TURNITIN.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (5MB) |
|
Text
RAMA_56201_09011282025035_0003047905_01_front_ref.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (672kB) |
|
Text
RAMA_56201_09011282025035_0003047905_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (475kB) |
|
Text
RAMA_56201_09011282025035_0003047905_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (587kB) |
|
Text
RAMA_56201_09011282025035_0003047905_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (756kB) |
|
Text
RAMA_56201_09011282025035_0003047905_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (73kB) |
|
Text
RAMA_56201_09011282025035_0003047905_06_ref.pdf - Bibliography Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (226kB) |
|
Text
RAMA_56201_09011282025035_0003047905_07_lamp.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (551kB) |
Abstract
Android menjadi OS paling populer pada perangkat mobile membuatnya menjadi target utama threat actor dalam membuat malware. Beberapa penelitian menunjukkan bahwa deteksi malware pada perangkat mobile dapat dilakukan dengan bantuan Machine Learning. Penelitian yang dilakukan penulis memiliki tujuan dalam mendeteksi eksploit reverse TCP pada network traffic dengan metode Random Forest. Deteksi yang dilakukan menggunakan Random Forest pada penelitian ini mencapai akurasi tertinggi yaitu 99.94% dengan 64 Decision Trees dan jumlah rasio data uji dan latih sebesar 80:20. Model Random Forest dengan akurasi terbaik juga diimplementasikan sebagai NIDS untuk menunjukkan traffic yang diduga kegiatan eksploit reverse TCP.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | android, metasploit, reverse TCP, malware, apk, trojan, random forest, network traffic |
Subjects: | T Technology > T Technology (General) > T57.6-57.97 Operations research. Systems analysis > T57.85 Network systems theory Including network analysis Cf. TS157.5+ Scheduling T Technology > T Technology (General) > T61-173 Technical education. Technical schools > T65 General works > T65.5.C65 Computer-assisted instruction |
Divisions: | 09-Faculty of Computer Science > 56201-Computer Systems (S1) |
Depositing User: | Muhammad Arya Danuarta |
Date Deposited: | 12 Jun 2024 07:09 |
Last Modified: | 12 Jun 2024 07:09 |
URI: | http://repository.unsri.ac.id/id/eprint/146745 |
Actions (login required)
View Item |