ANALISIS SENTIMEN MASYARAKAT TERKAIT PEMBANGUNAN IBU KOTA NUSANTARA (IKN) MENGGUNAKAN FINE-TUNING INDOBERT

NUGRAHA, WAHYU and Yusliani, Novi and Marieska, Mastura Diana (2024) ANALISIS SENTIMEN MASYARAKAT TERKAIT PEMBANGUNAN IBU KOTA NUSANTARA (IKN) MENGGUNAKAN FINE-TUNING INDOBERT. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021282126070.pdf] Text
RAMA_55201_09021282126070.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_TURNITIN.pdf] Text
RAMA_55201_09021282126070_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_01_front_ref.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_02.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (180kB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_03.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (212kB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_04.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (675kB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_05.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (302kB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_06.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11kB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_07_ref.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (150kB) | Request a copy
[thumbnail of RAMA_55201_09021282126070_0008118205_0021038607_08_lamp.pdf] Text
RAMA_55201_09021282126070_0008118205_0021038607_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy

Abstract

The development of Ibu Kota Nusantara (IKN) has become a topic of public interest, generating various opinions reflecting societal sentiment. This study aims to analyze public sentiment toward the development of IKN using a fine-tuned IndoBERT-based deep learning model. The dataset was collected from platform X, consisting of 18,264 training data, 2,283 validation data, and 2,283 test data, with sentiments categorized as positive, neutral, and negative. The model training was conducted using four different configurations of learning rates and epochs. The results indicate that the configuration with a learning rate of 5e-7 and 10 epochs achieved the best performance, with an accuracy of 89% and precision, recall, and F1-score values of 0.88 each. Other configurations yielded lower results, with a learning rate of 5e-5 experiencing overfitting on the training data. This study demonstrates that the IndoBERT model can be effectively used for sentiment analysis in the Indonesian language, with outcomes varying based on the training configurations applied.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Analisis Sentimen, IKN, IndoBERT, Deep Learning, Fine-Tuning
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Wahyu Nugraha
Date Deposited: 07 Jan 2025 06:38
Last Modified: 07 Jan 2025 06:38
URI: http://repository.unsri.ac.id/id/eprint/162862

Actions (login required)

View Item View Item