PREDIKSI PENGISIAN DAYA POWER SUPPLY DARI SOLAR CELL MENGGUNAKAN ALGORITMA REGRESI LINEAR

RAHARJO, JOHAN SUGIARTO and Ubaya, Huda and Sutarno, Sutarno (2025) PREDIKSI PENGISIAN DAYA POWER SUPPLY DARI SOLAR CELL MENGGUNAKAN ALGORITMA REGRESI LINEAR. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_ 09011482326003_cover.jpg]
Preview
Image
RAMA_56201_ 09011482326003_cover.jpg - Cover Image
Available under License Creative Commons Public Domain Dedication.

Download (657kB) | Preview
[thumbnail of RAMA_56201_ 09011482326003.pdf] Text
RAMA_56201_ 09011482326003.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003_TURNITIN.pdf] Text
RAMA_56201_ 09011482326003_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (20MB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_01_front_ref.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (993kB)
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_02.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (494kB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_03.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (357kB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_04.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_05.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (136kB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_06_ref.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (244kB) | Request a copy
[thumbnail of RAMA_56201_ 09011482326003 _0216068101_0201117802_07_lamp.pdf] Text
RAMA_56201_ 09011482326003 _0216068101_0201117802_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

This study aims to evaluate the performance of a solar power generation system in producing electrical energy and its capability to meet the energy demands of a smart home. The methodology involves data exploration, predictive modeling using linear regression, and energy sufficiency analysis. Preprocessing results indicate that the dataset is clean and suitable for analysis. Exploratory analysis reveals daily power fluctuations influenced by solar irradiation and performance differences between plants. The linear regression model shows that variables such as DC Power, Daily Yield, Module Temperature, Ambient Temperature, and Irradiation significantly affect AC Power predictions. Model evaluation produced an R² score of 0.9060 and a MAPE of 5.49%, indicating high prediction accuracy. Energy sufficiency analysis confirms that the 2 MWp solar power system is fully capable of meeting the energy needs of a smart home during a 45-day observation period. With an average energy production of 20,002 kWh and a maximum household consumption of 4,035 kWh, the system effectively supports continuous smart home operation without energy deficits.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Energi surya, smart home, regresi linier, prediksi daya, evaluasi energi.
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: johan sugiarto raharjo
Date Deposited: 16 Jul 2025 02:04
Last Modified: 16 Jul 2025 02:04
URI: http://repository.unsri.ac.id/id/eprint/178741

Actions (login required)

View Item View Item