DETEKSI EKSUDAT PADA RETINA DENGAN PENYAKIT DIABETES SECARA SEGMENTASI MENGGUNAKAN ADAPTIVE THRESHOLDING

LARASWATI, YENI and Erwin, Erwin (2019) DETEKSI EKSUDAT PADA RETINA DENGAN PENYAKIT DIABETES SECARA SEGMENTASI MENGGUNAKAN ADAPTIVE THRESHOLDING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011181520029.pdf] Text
RAMA_56201_09011181520029.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_TURNITIN.pdf] Text
RAMA_56201_09011181520029_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_0029017101_01_front_ref.pdf]
Preview
Text
RAMA_56201_09011181520029_0029017101_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Preview
[thumbnail of RAMA_56201_09011181520029_0029017101_02.docx.pdf] Text
RAMA_56201_09011181520029_0029017101_02.docx.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (523kB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_0029017101_03.docx.pdf] Text
RAMA_56201_09011181520029_0029017101_03.docx.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (708kB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_0029017101_04.docx.pdf] Text
RAMA_56201_09011181520029_0029017101_04.docx.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_0029017101_05.docx.pdf] Text
RAMA_56201_09011181520029_0029017101_05.docx.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (184kB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_0029017101_06_ref.docx.pdf] Text
RAMA_56201_09011181520029_0029017101_06_ref.docx.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (399kB) | Request a copy
[thumbnail of RAMA_56201_09011181520029_0029017101_07_lamp.pdf] Text
RAMA_56201_09011181520029_0029017101_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (989kB) | Request a copy

Abstract

The retina is a thin layer located on the back of the eyeball. Retinal disease is a disorder or disorder that occurs in the eye that can adversely affect one's vision so that over time will experience blindness. One feature of the disease in the retina is characterized by the appearance of exudates. An exudate is a dots or dots of various sizes and shapes that look clear yellowish with high enough contrast. In this final project research the authors conducted an exudate detection study using Adaptive Thresholding as a step to diagnose retinal disease. In the process through several stages such as RGB image converted to Grayscale, image quality improvement using Clahe, contrast equalization using imagust functions, after leveling the next step smoothes the image with a median filter, deletion of Optic Disk using mesgrid and CHT and for the detection process of exudate using Adaptive Thresholding in a manner segmentation. In this study the authors used the STARE dataset to get the performance results of the accuracy value of 93.25%, specificity of 93.95% and sensitivity of 80.56%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Exudate Segmentation, Exudate Detection, Retina Image, Optic Disk, Adaptive Thresholding.
Subjects: Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation.
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Users 3380 not found.
Date Deposited: 27 Nov 2019 06:02
Last Modified: 27 Nov 2019 06:02
URI: http://repository.unsri.ac.id/id/eprint/18815

Actions (login required)

View Item View Item