IMPLEMENTASI METODE ENSEMBLE K-NEAREST NEIGHBOR UNTUK PREDIKSI JUMLAH UANG BEREDAR

PASARIBU, JOUVERY PRAWIRA and Yunita, Yunita and Miraswan, Kanda Januar (2019) IMPLEMENTASI METODE ENSEMBLE K-NEAREST NEIGHBOR UNTUK PREDIKSI JUMLAH UANG BEREDAR. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021281419057.pdf] Text
RAMA_55201_09021281419057.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6MB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_TURNITIN.pdf] Text
RAMA_55201_09021281419057_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (12MB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021281419057_6587140_0009019002_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Preview
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_02.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (431kB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_03.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (891kB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_04.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_05.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (269kB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_06.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6kB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_07_ref.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (128kB) | Request a copy
[thumbnail of RAMA_55201_09021281419057_6587140_0009019002_08_lamp.pdf] Text
RAMA_55201_09021281419057_6587140_0009019002_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (156kB) | Request a copy

Abstract

Predicting money supply is needed in order to anticipate future inflation. Predicting is done with a modified kNN regression and a combination of the final steps using the ensemble technique, namely weighted means. The data used uses data on the money supply and variables that affect the money supply, namely foreign assets, central government bills, and other securities bills. These variables are used to predict the money supply that will be predicted. The data used monthly money supply data in 2014 - 2018 to predict the money supply in 2016, 2017,2018 with training data 2 years before. In this study, the best evaluation value obtained is the accuracy in predicting predictions in 2016 k-9 with MAE = 47.59946, MAPE = 1.0056341, and RMSEP = 59.847633 for ensemble with MAE = 48.394093, MAPE = 1.0245531 and RMSEP = 59.975723, 2017 predictions k-3 with MAE = 125,575, MAPE = 2.390784, and RMSEP = 148.4847 for ensemble with 171.6709, MAPE = 3.283542 and RMSEP = 189.6373, and predictions for 2018 k-10 with MAE = 37.34648, MAPE = 0.672266, and RMSEP = 42.485 for 4284 ensemble with MAE = 40.38839, MAPE = 0.728408 and RMSEP = 45.01614.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Prediksi, k nearst neihbor, ensemble k nearest neighbor, memprediksi jumlah uang beredar
Subjects: H Social Sciences > HG Finance > HG201-1496 Money
Q Science > Q Science (General) > Q1-295 General
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Users 3810 not found.
Date Deposited: 10 Jan 2020 08:56
Last Modified: 10 Jan 2020 08:56
URI: http://repository.unsri.ac.id/id/eprint/23747

Actions (login required)

View Item View Item