Sukemi, Sukemi (2019) Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier. algorithms 2019, 12 (6). pp. 1-12. ISSN 1999-4893
Text
Deep Learning with a Recurrent (Merge).pdf - Published Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
The interpretation of Myocardial Infarction (MI) via electrocardiogram (ECG) signal is a challenging task. ECG signals’ morphological view show significant variation in di�erent patients under di�erent physical conditions. Several learning algorithms have been studied to interpret MI. However, the drawback of machine learning is the use of heuristic features with shallow feature learning architectures. To overcome this problem, a deep learning approach is used for learning features automatically, without conventional handcrafted features. This paper presents sequence modeling based on deep learning with recurrent network for ECG-rhythm signal classification. The recurrent network architecture such as a Recurrent Neural Network (RNN) is proposed to automatically interpret MI via ECG signal. The performance of the proposed method is compared to the other recurrent network classifiers such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The objective is to obtain the best sequence model for ECG signal processing. This paper also aims to study a proper data partitioning ratio for the training and testing sets of imbalanced data. The large imbalanced data are obtained from MI and healthy control of PhysioNet: The PTB Diagnostic ECG Database 15-lead ECG signals. According to the comparison result, the LSTM architecture shows better performance than standard RNN and GRU architecture with identical hyper-parameters. The LSTM architecture also shows better classification compared to standard recurrent networks and GRU with sensitivity, specificity, precision, F1-score, BACC, and MCC is 98.49%, 97.97%, 95.67%, 96.32%, 97.56%, and 95.32%, respectively. Apparently, deep learning with the LSTM technique is a potential method for classifying sequential data that implements time steps in the ECG signal.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | deep learning; gated recurrent unit; long short-term memory; myocardial infarction; recurrent neural network; sequence modeling |
Subjects: | Q Science > Q Science (General) > Q334-342 Computer science. Artificial intelligence. Algorithms. Robotics. Automation. |
Divisions: | 09-Faculty of Computer Science > 55101-Informatics (S2) |
Depositing User: | Dr. Sukemi Sukemi |
Date Deposited: | 11 Sep 2020 13:54 |
Last Modified: | 30 Dec 2021 02:36 |
URI: | http://repository.unsri.ac.id/id/eprint/34994 |
Actions (login required)
View Item |