DINA, TIARA ANNISA and Nurmaini, Siti (2021) KLASIFIKASI GELOMBANG PQRST PADA SINYAL ELEKTROKARDIOGRAM MENGGUNAKAN METODE LONG SHORT-TERM MEMORY. Undergraduate thesis, Sriwijaya University.
Text
RAMA_52601_09011381722124.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (10MB) | Request a copy |
|
Text
RAMA_52601_09011381722124_TURNITIN.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (35MB) | Request a copy |
|
Preview |
Text
RAMA_52601_09011381722124_0002085908_01_front_ref.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (1MB) | Preview |
Text
RAMA_56201_09011381722124_0002085908_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (651kB) | Request a copy |
|
Text
RAMA_56201_09011381722124_0002085908_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (359kB) | Request a copy |
|
Text
RAMA_56201_09011381722124_0002085908_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (8MB) | Request a copy |
|
Text
RAMA_56201_09011381722124_0002085908_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (48kB) | Request a copy |
|
Text
RAMA_56201_09011381722124_0002085908_06_ref.pdf - Bibliography Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (115kB) | Request a copy |
|
Text
RAMA_56201_09011381722124_0002085908_07_lamp.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (86kB) | Request a copy |
Abstract
Elektrokardiogram (EKG) merupakan alat diagnosis non-invasif yang paling umum digunakan untuk merekam aktivitas fisiologis jantung selama periode waktu tertentu. Didalam EKG terdapat sinyal QRS-complex, Gelombang P dan T merupakan bentuk gelombang karakteristik utama dalam EKG, merepresentasikan berbagai kegiatan jantung. Penelitian ini menggunakan dataset dari Lobachevsky University Database (LUDB). Metode Long Short-Term Memory digunakan untuk mengatasi masalah vanishing gradient. Kemudian dilakukan perbandingan menggunakan metode LSTM untuk mendapatkan hasil model yang terbaik. . Hasil klasifikasi menggunakan metode LSTM tersebut menunjukkan hasil yang baik pada kasus 4 kelas gelombang PQRST yaitu nilai akurasi sebesar 97,53%, nilai presisi sebesar 93,44%, nilai sensitivitas sebesar 93,27%, nilai spesifisitas sebesar 98,45% serta nial f1-score sebesar 93,35%. Selanjutnya hasil klasifikasi pada kasus 7 kelas gelombang PQRST juga mendapatkan hasil yang baik yaitu nilai akurasi sebesar 99,18%, nilai presisi sebesar 93,76%, nilai sensitivitas sebesar 94,51%, nilai spesifisitas sebesar 99,54%, dan nilai F1-score sebesar 94.12%.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | ECG Classification, PQRST Waves, Recurrent Neural Network, Long Short-Term Memory, Deep Learning |
Subjects: | T Technology > T Technology (General) > T1-995 Technology (General) |
Divisions: | 09-Faculty of Computer Science > 56201-Computer Systems (S1) |
Depositing User: | Tiara Annisa Dina |
Date Deposited: | 26 Aug 2021 03:22 |
Last Modified: | 26 Aug 2021 03:22 |
URI: | http://repository.unsri.ac.id/id/eprint/52647 |
Actions (login required)
View Item |