PERBANDINGAN METODE RANDOM FOREST DIOPTIMASI DENGAN GENETIK ALGORITMA DAN METODE RANDOM FOREST DIOPTIMASI DENGAN GRID SEARCH PADA SMART TRANSPORTASI SMART CITY UNTUK MENENTUKAN JALUR TERBAIK

SHOFI, GHINADHIA and Sukemi, Sukemi and Oklilas, Ahmad Fali (2023) PERBANDINGAN METODE RANDOM FOREST DIOPTIMASI DENGAN GENETIK ALGORITMA DAN METODE RANDOM FOREST DIOPTIMASI DENGAN GRID SEARCH PADA SMART TRANSPORTASI SMART CITY UNTUK MENENTUKAN JALUR TERBAIK. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011381924086.pdf] Text
RAMA_56201_09011381924086.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_TURNITIN.pdf] Text
RAMA_56201_09011381924086_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (7MB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201__01_front_ref.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201__01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (661kB)
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201_02.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (345kB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201_03.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201_04.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (2MB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201_05.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (40kB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201_06_ref.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (106kB) | Request a copy
[thumbnail of RAMA_56201_09011381924086_0003126604_0015107201_07_lamp.pdf] Text
RAMA_56201_09011381924086_0003126604_0015107201_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Technological advancements provide many capabilities to minimize traffic congestion, allow drivers to find the most efficient route and eliminate congestion on the road. Smart transportation in smart cities is an important milestone in technological advancement. To support smart transportation, it is necessary to utilize machine learning to determine the best route. This research focuses on utilizing CCTV video data trained with YOLO, processed with random forest, and optimized with genetic algorithm and grid search. The best first search algorithm is used to determine the best route based on the optimization results of the genetic algorithm and grid search. This research resulted in two types of accuracy: model accuracy and reading accuracy. The random forest method achieved a model accuracy of 84.38% and a reading accuracy of 92.85%. After optimization with genetic algorithm, the model accuracy increased to 91% and the reading accuracy reached 94.28%. On the other hand, optimization with grid search resulted in model accuracy of 76% and reading accuracy of 94.28%. Based on the research results, the best results were obtained by performing random forest optimization using a genetic algorithm, with an increase in model accuracy from 84.38% to 91%. The best route chosen is Route 5 with a weight of 19.8, including Parameswara Musi II, Parameswara Angkatan 45, Kampus Angkatan 45, Taman Siswa Dolog, Dolog Pasar Kuto, Boom Baru from Pasar Kuto, and Boom Baru Port.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Smart Transportasi, Random Forest, Genetik Algoritma, Grid Search, Jalur Terbaik.
Subjects: Q Science > Q Science (General) > Q300-390 Cybernetics > Q325.5 Machine learning
T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Ghinadhia Shofi
Date Deposited: 01 Aug 2023 06:56
Last Modified: 01 Aug 2023 06:56
URI: http://repository.unsri.ac.id/id/eprint/124713

Actions (login required)

View Item View Item