PENERAPAN K-NEAREST NEIGHBORS DAN RANDOM OVERSAMPLING PADA KLASIFIKASI KEJADIAN HUJAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE

APRIANTI, KHOIRIYAH and Eliyati, Ning and Zayanti, Des Alwine (2024) PENERAPAN K-NEAREST NEIGHBORS DAN RANDOM OVERSAMPLING PADA KLASIFIKASI KEJADIAN HUJAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_44201_08011282025055.pdf] Text
RAMA_44201_08011282025055.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_44201_08011282025055_TURNITIN.pdf] Text
RAMA_44201_08011282025055_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_44201_08011282025055_0020115903_0004127001_01_front_ref.pdf] Text
RAMA_44201_08011282025055_0020115903_0004127001_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[thumbnail of RAMA_44201_08011282025055_0020115903_0004127001_02.pdf] Text
RAMA_44201_08011282025055_0020115903_0004127001_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (575kB) | Request a copy
[thumbnail of RAMA_44201_08011282025055_0020115903_0004127001_03.pdf] Text
RAMA_44201_08011282025055_0020115903_0004127001_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (307kB) | Request a copy
[thumbnail of RAMA_44201_08011282025055_0020115903_0004127001_04.pdf] Text
RAMA_44201_08011282025055_0020115903_0004127001_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (646kB) | Request a copy
[thumbnail of RAMA_44201_08011282025055_0020115903_0004127001_05.pdf] Text
RAMA_44201_08011282025055_0020115903_0004127001_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (180kB) | Request a copy
[thumbnail of RAMA_44201_08011282025055_0020115903_0004127001_06_ref.pdf] Text
RAMA_44201_08011282025055_0020115903_0004127001_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (193kB) | Request a copy

Abstract

Before performing classification, it is important to ensure that the dataset used does not contain missing data and imbalanced data. Missing data is a condition where some information or data from the dataset is not available. Imbalanced data is a condition where the number of observations in one class in a dataset is much greater than the number of observations in other classes. The purpose of this research is to classify rainfall events using linear SVM method by applying KNN (K=2) and ROS. The level of classification accuracy with imbalanced data produces an accuracy value of 83.29%, precision of 78.06%, and recall of 97.29%. While on balanced data by applying ROS produces an accuracy value of 92.74%, precision 100%, and recall 86.95%. The results showed that the application of ROS succeeded in increasing the accuracy value by 9.45% and precision by 21.94%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: KNN, Random Oversampling, SVM
Subjects: Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76.9.B45 Big data. Machine learning. Quantitative research. Metaheuristics.
Divisions: 08-Faculty of Mathematics and Natural Science > 44201-Mathematics (S1)
Depositing User: Khoiriyah Aprianti
Date Deposited: 23 Aug 2024 04:04
Last Modified: 23 Aug 2024 04:04
URI: http://repository.unsri.ac.id/id/eprint/155419

Actions (login required)

View Item View Item