KLASIFIKASI TRAFFIC JARINGAN ONLINE GAMBLING BERBASIS DEEP LEARNING

PRASISKA, RAHAYU and Stiawan, Deris and Afifah, Nurul (2025) KLASIFIKASI TRAFFIC JARINGAN ONLINE GAMBLING BERBASIS DEEP LEARNING. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_56201_09011182126002_cover.jpg]
Preview
Image
RAMA_56201_09011182126002_cover.jpg - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (497kB) | Preview
[thumbnail of RAMA_56201_09011182126002.pdf] Text
RAMA_56201_09011182126002.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_TURNITIN.pdf] Text
RAMA_56201_09011182126002_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (11MB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_01_front_ref.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (7MB)
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_02.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_03.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (5MB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_04.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (9MB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_05.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (573kB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_06_ref.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy
[thumbnail of RAMA_56201_09011182126002_0003047905_0010119206_07_lamp.pdf] Text
RAMA_56201_09011182126002_0003047905_0010119206_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Request a copy

Abstract

Pesatnya pertumbuhan aktivitas judi online menimbulkan kebutuhan akan sistem deteksi yang akurat dan efisien. Penelitian ini bertujuan untuk mendeteksi aktivitas judi online dalam lalu lintas jaringan menggunakan kombinasi Autoencoder dan Deep Neural Network (DNN). Dataset diperoleh dari data lalu lintas jaringan dalam format PCAP yang kemudian diekstraksi menggunakan Tshark dan dikonversi ke format CSV. Proses dimulai dengan ekstraksi fitur melalui Autoencoder untuk menghasilkan representasi data berdimensi rendah, dilanjutkan dengan klasifikasi menggunakan model DNN. Evaluasi dilakukan dengan tiga skenario proporsi data (70:15:15, 80:10:10, dan 90:5:5) dan berbagai variasi parameter pelatihan. Hasil terbaik diperoleh pada proporsi data 70:15:15 dengan varian model DNN keempat pada epoch ke-200, yang mencapai F1-score sebesar 99,38% dan akurasi 99,87%. Model menunjukkan stabilitas performa tanpa indikasi overfitting, serta hasil evaluasi yang lebih representatif dibanding proporsi data lainnya. Penelitian ini menunjukkan bahwa pendekatan Autoencoder-DNN mengidentifikasi traffic judi online secara otomatis dan andal.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Keamanan Jaringan, Traffic Network, Deep Neural Network, Autoencoder
Subjects: T Technology > T Technology (General) > T57.6-57.97 Operations research. Systems analysis > T57.85 Network systems theory Including network analysis Cf. TS157.5+ Scheduling
Divisions: 09-Faculty of Computer Science > 56201-Computer Systems (S1)
Depositing User: Rahayu Prasiska
Date Deposited: 04 Aug 2025 07:53
Last Modified: 04 Aug 2025 07:53
URI: http://repository.unsri.ac.id/id/eprint/182224

Actions (login required)

View Item View Item