OPTIMASI NAIVE BAYES UNTUK KLASIFIKASI SERANGAN DDOS DENGAN PARTICLE SWARM OPTIMIZATION

NURWINTO, COKRO and Rini, Dian Palupi and Stiawan, Deris (2020) OPTIMASI NAIVE BAYES UNTUK KLASIFIKASI SERANGAN DDOS DENGAN PARTICLE SWARM OPTIMIZATION. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021381520079.pdf] Text
RAMA_55201_09021381520079.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_TURNITIN.pdf] Text
RAMA_55201_09021381520079_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (10MB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021381520079_0023027804_0003047905_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB) | Preview
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_02.pdf] Text
RAMA_55201_09021381520079_0023027804_0003047905_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (307kB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_03.pdf] Text
RAMA_55201_09021381520079_0023027804_0003047905_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (366kB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_04.pdf] Text
RAMA_55201_09021381520079_0023027804_0003047905_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (810kB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_05.pdf] Text
RAMA_55201_09021381520079_0023027804_0003047905_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (129kB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_06_ref.pdf] Text
RAMA_55201_09021381520079_0023027804_0003047905_06_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (106kB) | Request a copy
[thumbnail of RAMA_55201_09021381520079_0023027804_0003047905_07_lamp.pdf] Text
RAMA_55201_09021381520079_0023027804_0003047905_07_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (317kB) | Request a copy

Abstract

DDoS is one of dangerous internet / cyber attacks. One of solution for overcoming the problem with identifying a traffic network wheter if it contains DDoS attack or not. Identification requires a lot of data for recognizing the pattern of DDoS attack so that it can be prevented as soon as possible. But, the traffic network it self has contain a lot of data per seconds. Therefore, a classification algorithm that can process a lot of data at one time is required to solve the problem, one of them is Naïve Bayes algorithm. One of Naïve Bayes weaknesses is its accuracy that depends on how many attributes of the data being used. Therefore, the Particle Swarm Optimization algorithm is used as attributes reduction algorithm, and also enhance Naïve Bayes’s accuracy. The accuracy result of Naïve Bayes is 91,55% and Naïve Bayes optimized with Particle Swarm Optimization is 99,13%, resulting accuracy enhancement by 7,58%. Keywords : Naïve Bayes, Particle Swarm Optimzation, DDoS, Classification.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Naïve Bayes, Particle Swarm Optimzation, DDoS
Subjects: Q Science > Q Science (General) > Q300-390 Cybernetics > Q325.5 Machine learning
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Users 7379 not found.
Date Deposited: 14 Aug 2020 04:28
Last Modified: 14 Aug 2020 04:28
URI: http://repository.unsri.ac.id/id/eprint/33053

Actions (login required)

View Item View Item