SEPTRIA, PUTRI and Primartha, Rifkie and Miraswan, Kanda Januar (2019) IMPLEMENTASI METODE NAIVE BAYES UNTUK MEMPERBAIKI INSTANCE NOISE (MISSING VALUE) PADA DATA MINING. Undergraduate thesis, Sriwijaya University.
Text
RAMA_55201_09121002005.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (13MB) | Request a copy |
|
Text
RAMA_55201_09121002005_0001067709_0009019002_02.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (394kB) | Request a copy |
|
Preview |
Text
RAMA_55201_09121002005_0001067709_0009019002_01_FRONT_REF.pdf - Accepted Version Available under License Creative Commons Public Domain Dedication. Download (11MB) | Preview |
Text
RAMA_55201_09121002005_0001067709_0009019002_03.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (327kB) | Request a copy |
|
Text
RAMA_55201_09121002005_0001067709_0009019002_04.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (740kB) | Request a copy |
|
Text
RAMA_55201_09121002005_0001067709_0009019002_06.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (85kB) | Request a copy |
|
Text
RAMA_55201_09121002005_0001067709_0009019002_07_REF.pdf - Bibliography Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (120kB) | Request a copy |
|
Text
RAMA_55201_09121002005_0001067709_0009019002_05.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (179kB) | Request a copy |
|
Text
RAMA_55201_09121002005_TURNITIN.pdf - Accepted Version Restricted to Repository staff only Available under License Creative Commons Public Domain Dedication. Download (12MB) | Request a copy |
Abstract
Performa algoritma pada data mining tergantung pada kualitas dataset, data training berkualitas rendah menyebabkan klasifikasi yang lemah. Dataset yang besar dengan banyak kelas memiliki noise atau mengandung error, hal inim enyebabkan berkurangnya akurasi pada klasifikasi. Data dikatakan noise apabila memiliki nilai kosong dan/atau derau dan/atau pencilan dan/atau inkonsistensi. Proses pembersihan data atau data cleaning dapat dilakukan dengan cara: mengisi nilai-nilai yang kosong, menghaluskan data yang berderau, membuang pencilan dan memperbaiki inkonsistensi dengan menggunakan regresi atau inferensi pada metode klasifikasi Naïve Bayes atau Decision Tree. Proses Cleaning Data dilakukan dengan menggunakan data masukan yang sudah ditentukan sebelumnya. Percobaan perangkat lunak ini menggunakan instance data sebanyak 3110. Hasil percobaan menunjukan akurasi dengan K-fold Validation pada metode Decision Tree dengan Naïve Bayes dilakukan lebih baik sebesar 85.0% dibandingkan hasil akurasi metode Decision Tree yaitu sebesar 68.0%. Kata Kunci: Data Mining, Klasifikasi, Naïve Bayes, Decision Tree, Cleaning Data, K-fold Validation.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Data Mining, Klasifikasi, Naïve Bayes, Decision Tree, Cleaning Data, K-fold Validation. |
Subjects: | Q Science > QA Mathematics > QA75-76.95 Calculating machines > QA76 Computer software |
Divisions: | 09-Faculty of Computer Science > 55201-Informatics (S1) |
Depositing User: | Users 1569 not found. |
Date Deposited: | 02 Sep 2019 08:53 |
Last Modified: | 02 Sep 2019 08:53 |
URI: | http://repository.unsri.ac.id/id/eprint/6052 |
Actions (login required)
View Item |