OPTIMASI METODE SUPPORT VECTOR MACHINE MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK PREDIKSI PENYAKIT AUTISME

DAMAYANTI, APRINA and Utami, Alvi Syahrini and Marieska, Mastura Diana (2023) OPTIMASI METODE SUPPORT VECTOR MACHINE MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK PREDIKSI PENYAKIT AUTISME. Undergraduate thesis, Sriwijaya University.

[thumbnail of RAMA_55201_09021181823028.pdf] Text
RAMA_55201_09021181823028.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (4MB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_TURNITIN.pdf] Text
RAMA_55201_09021181823028_TURNITIN.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (8MB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_01_front_ref.pdf]
Preview
Text
RAMA_55201_09021181823028_0022127804_0021038607_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (3MB) | Preview
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_02.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_02.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (134kB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_03.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_03.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (314kB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_04.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_04.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (384kB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_05.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_05.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (75kB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_06.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_06.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (6kB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_07_ref.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_07_ref.pdf - Bibliography
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (265kB) | Request a copy
[thumbnail of RAMA_55201_09021181823028_0022127804_0021038607_08_lamp.pdf] Text
RAMA_55201_09021181823028_0022127804_0021038607_08_lamp.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Public Domain Dedication.

Download (265kB) | Request a copy

Abstract

Support Vector Machine is a method in machine learning that can be used to analyze data and sort it into one of two categories. Support Vector Machine has disadvantages in determining the optimal parameter and suitable features, this has an effect on the value of accuracy produced. Therefore, optimization is needed to select the features to be used. This study optimizes the Support Vector Machine algorithm with features selection using Particle Swarm Optimization. The data used is autism spectrum disorder with a total number 104 data. Prediction using Support Vector Machine algorithm resulted accuracy is 50%. While, features selection Particle Swarm Optimization on Support Vector Machine resulted average accuracy is 69%. The increase in average prediction accuracy reaches 19%. Features selection Particle Swarm Optimization succeeded in increasing the accuracy of the Support Vector Machine algorithm in predicting data of autism spectrum disorder.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Prediksi, Particle Swarm Optimization, Seleksi Fitur, Support Vector Machine, Penyakit Autisme
Subjects: T Technology > T Technology (General) > T1-995 Technology (General)
Divisions: 09-Faculty of Computer Science > 55201-Informatics (S1)
Depositing User: Aprina Damayanti
Date Deposited: 27 Jan 2023 04:59
Last Modified: 27 Jan 2023 04:59
URI: http://repository.unsri.ac.id/id/eprint/88090

Actions (login required)

View Item View Item